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Given two positive integers n and 4, we prove that there exists a finite linear
space whose automorphism group has exactly n orbits on points and 4 orbits on
lines if and only if m <A ¢ 1987 Academic Press. Inc,

1. INTRODUCTION

A linear (resp. quasilinear) space is an incidence structure of points and
lines such that any two points are incident with exactly one (resp. at most
one) line, with the nondegeneracy conditions that any point is incident
with at least two lines and any line is incident with at least two points.
Without any confusion, a line may be identified with the set of its incident
points. Note that, if S is a linear space, the dual incidence structure S* is
quasilinear.

Let I" be any subgroup of the automorphism group Aut S of a linear
space S and let 7, (resp. 4,) denote the number of orbits of I on the set of
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points (resp. on the set of lines) of S. If S is finite, a classical result of
Block [1] asserts that m,<A,. This is no longer true if S is infinite, as
shown by the following example due to Valette (see Buekenhout [3]): let
D be a closed disc in the Euclidean plane and let S be the linear space
whose points are the points of D and whose lines are the intersections of D
with the lines of the plane having more than one point in common with D.
The group Aut S is clearly transitive on the lines of S, on the points inside
D and on the points on the boundary of D. Actually Aut S has two orbits
on the points of S and only one orbit on the lines. Indeed, for any point x
inside D, there exist two lines L, and L, not containing x, such that any
line of S passing though x intersects L, U L,. On the contrary, for any
point x on the boundary of D and for any pair of lines L, and L, not con-
taining x, there is a line of S passing through x and disjoint from L, U L,.
Therefore the interior of D and the boundary of D are two orbits of Aut .S.

This paper is concerned with the following two problems: for which pairs
(m, 4) of positive integers does there exist

(1) a finite linear space S
(2) a finite quasilinear space S

such that Aut S has exactly 7 orbits on the points and A orbits on the lines
of §? A pair (=, 1) of positive integers satisfying condition (1) (resp. con-
dition (2)) will be called linearly (resp. quasilinearly) realizable.

THEOREM 1. A pair (r, A) is linearly realizable if and only if © < A.

THEOREM 2. All pairs (n, 1) are quasilinearly realizable.

2. PROOF OF THEOREM |

Given a prime power 4 and an integer n>2, put ¢,=¢> ' (1 <i<n)and
consider the projective space P= PG(n, ¢,) with homogeneous coordinates
(x|, X3,.., X,,, ). The points of P such that x,, , =0 will be called points at
infinity. Let 2 be the set of points of P whose coordinates satisfy
x,€GF(g,) for 1 <i<nand x,,,=1. Let & be the set of lines of P having
at least two points in # and let #, be the set of points at infinity of all the
lines in &.

Now let S denote the linear space whose set of points is #uU #, and
whose set of lines is ¥ U {#, }, a point being incident with a line iff it
belongs to that line. Since the lines of S have n+ | distinct sizes, namely

q, + 1,(12'{" 1,..., q"+l
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and
|:¢l\=l+qll+qll an+ +‘/2q3.”qn*

Aut S has at least n+ I line-orbits. Similarly, Aut S has at least » orbits on
the points of the line 2, because the points at infinity of lines of different
sizes are necessarily in different orbits, and so Aut S has at least n+ 1

point-orbits. Let G be the group of projectivities of P defined by the
matrices

(23T O O T O hl
ay ayp 0 - 0 by
ds, adszs dy; " 0 h3
Ay dyy dyy ~7 7 Ay, hu
0 0 0O - 0 1

where a,,, h,e GF(g,) and a,,5 0 for 1 < j<i<n The group G induces on S
an automorphism group which is easily checked to be transitive on .# and
also on the lines of S having the same size. It follows that Aut S has exactly
n+ 1 point-orbits and n+1 line-orbits. Thus the pair (n+ 1, n+1) is
linearly realizable for every n>2.

Let 2! 2 .., 2" denote the orbits of AutS of size 1, g¢,,
Gn 1qns Y2q5--g, Tespectively on the points of 4, . Consider the linear
space 8" (I<r<n—1) obtained from S by deleting the points of
20w, and also the linear space S” obtained from S be deleting
the points of 2, and the line .2, .

Clearly, Aut S” has n+1—r point-orbits and n+1 line-orbits, while
Aut S" has just one point-orbit and # line-orbits. This shows that every pair
(m, 4) with m < 4 1s linearly realizable, except perhaps (1, 1) and (2, 2). But
any finite Desarguesian projective plane gives an example where 1= /4i=1,
and any finite degenerate projective plane having a line of size A>3 and k
lines of size 2 gives an example where n=/4=2.

3. PROOF OF THEOREM 2

Since any linear space is also quasilinear, every pair (7, 4) with 7 <4 is
quasilinearly realizable by Theorem 1. On the other hand, if the
automorphism group Aut S of a linear space S has n orbits on the points
and 4 orbits on the lines of S, then the automorphism group Aut S* of the
dual quasilinear space S* has 1 orbits on the points and n orbits on the
lines of S*. It follows that every pair (n, A) with 7 > 2 is also quasilinearly
realizable.
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4. REMARKS

(1) The problems discussed in this paper may of course be restricted to
particular classes of finite linear or quasilinear spaces, for instance the
2— (v, k, 1) designs (i.e., the finite linear spaces all of whose lines have the
same size), but very little information seems to be available. Saxl [11, 12]
has proved that if r=4 in a 2— (v, 3, 1) design with v> 7, then n < 3.

In the particular case of finite projective planes, it is well known that 7 is
always equal to 4. We do not know for which positive integers m there
exists a finite projective plane whose automorphism group has exactly n
orbits on points (and so 7 orbits on lines). Here is some partial infor-
mation: m=1 in the Desarguesian planes, 7 =2 in the Hughes planes [7,
pp. 246-2477, m=3 in the Figueroa planes [8], =4 in the Hering and
Schaeffer planes [9, pp.261-263], m=5 in the Narayana Rao and
Satyanarayana planes [10], = = 10 in the Capursi plane [6]; moreover, for
any odd prime power ¢>3, m=¢+2 is realized in a generalized André
plane of order 42, as shown in [2].

(2) The situation is worse if we remove the finiteness assumption in our
original problem. For instance, in the introduction we have described an
infinite linear space for which (n, 2)=(2, 1), but we do not even know
whether there exists an infinite linear space for which n>2 and A =1 (an
interesting idea about this problem was formulated by Cameron [5]).

(3) Similar problems arise in a natural way for all incidence structures.
For example, in the case of undirected graphs (without loops and multiple
edges), Buset [4] has proved that, given two integers v>0 and ¢ = 0, there
exists a finite graph (resp. a finite connected graph) whose automorphism
group has exactly v orbits on vertices and ¢ orbits on edges if and only if
v<2e+ 1 (resp. v<e+ 1).
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